Piezoelektrischer Schwermetallbiosensor mit Glutathion und Phytochelatin als Biokomponente

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Diplom-Biologe

Marc Christofer Josef Ebel

aus

Aachen

Berichter: Universitätsprofessor Dr.-Ing. Winfried Hartmeier
Universitätsprofessor Dr. rer. nat. Andreas Schäffer

Tag der mündlichen Prüfung: 13.05.2005

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar.
Vorwort

Diese Arbeit entstand während meiner Beschäftigung als wissenschaftlicher Mitarbeiter am Lehrstuhl für Biotechnologie der RWTH-Aachen.

Ich danke Herrn Prof. Dr.-Ing. W. Hartmeier für die Bereitstellung des interessanten Themas und seine gewährte Unterstützung bei der Durchführung dieser Arbeit.

Herrn Prof. Dr. A. Schäffer danke ich für die Übernahme des Korreferates.

Danken möchte ich auch den Mitarbeitern des Lehrstuhls für Biotechnologie der RWTH-Aachen, insbesondere Frau Dr. M. Reiss für ihre tatkräftige Unterstützung, ihre konstruktive Zusammenarbeit und fruchtbaren Diskussionen während dieser Arbeit.

Mein Dank gilt Dr. Martin Zimmermann vom Institut für Mikrobiologie der RWTH-Aachen für die freundliche Unterstützung bei mikrobiologischen Fragestellungen, sowie der mechanischen Werkstatt der biologischen Institute der RWTH-Aachen, dort besonders Herrn P. Hochstenbach, für die Unterstützung bei technischen Fragestellungen.

Spezieller Dank gebührt Alice Kapitain für ihre Unterstützung, die aufmunternden Worte und ihre große Geduld.

Besonders danke ich auch meinen Eltern, die mir das Studium ermöglicht und mich zu jeder Zeit unterstützt und motiviert haben.
Inhaltsverzeichnis

1. **Einleitung** ... 1
 1.1 Schwermetalle ... 1
 1.2 Mechanismen zur Schwermetalldetoxifikation .. 3
 1.3 Schwermetalldetektion .. 5
 1.4 Piezoelektrische Quarze .. 9
 1.5 Aufgabenstellung .. 14

2. **Material und Methoden** .. 15
 2.1 Chemikalien ... 15
 2.2 Mikroorganismen .. 15
 2.3 Puffer und Medien ... 15
 2.4 Gewinnung der biologischen Komponente ... 16
 2.4.1 *In-vivo*-Induktion ... 16
 2.4.2 *In-vitro*-Induktion .. 16
 2.5 Reinigung des Enzyms Phytochelatin-Synthase .. 17
 2.5.1 Proteinbestimmung nach Bradford .. 17
 2.5.2 Lebendzellzahlbestimmung ... 18
 2.5.3 Ammoniumsulfat-Fällung ... 18
 2.5.4 Ethanolfällung .. 18
 2.6 Immobilisierung der Phytochelatin-Synthase ... 18
 2.6.1 Quervernetzung .. 18
 2.6.2 Alginat-Einhüllung ... 19
 2.6.3 PVA-Einhüllung ... 19
 2.6.4 Sol-Gel-Einhüllung .. 20
 2.7 Aktivitätstest .. 20
 2.8 Kontinuierliche Herstellung von Phytochelatin ... 21
 2.9 Schwingquarze .. 22
 2.9.1 Reinigung der Schwingquarze ... 22
 2.9.2 SAMs (self-assembling monolayers) ... 23
 2.9.3 Aufbringen der biologisch aktiven Komponenten 23
 2.9.4 Überprüfung der Beschichtungen .. 25
 2.10 Messaufbau des Biosensors ... 26

3. **Ergebnisse** ... 28
 3.1 Gewinnung von Phytochelatin .. 28
 3.1.1 *In-vivo*-Induktion ... 28
 3.1.2 *In-vitro*-Induktion .. 29
 3.1.3 Zellaufschluss ... 30
 3.1.4 Proteinfällung .. 31
 3.1.5 Synthesetemperatur ... 33
 3.1.6 Immobilisierung .. 34
 3.1.7 Kontinuierliche Phytochelatin-Produktion .. 41
 3.2 Schwingquarze .. 43
3.2.1 Reinigung der Schwingquarze ... 43
3.2.2 Aufbringen der Einzelmolekülschichten .. 44
3.2.3 Aktivierung der Einzelmolekülschichten .. 46
3.2.4 Aufbringen der Proteinschicht ... 48
3.2.5 Stabilitätsuntersuchungen ... 49

3.3 Schwermetallmessungen ... 52
3.3.1 Charakterisierung der statischen Messmethode 53
3.3.2 Regeneration der biologischen Komponenten 55
3.3.3 Schwermetallmessungen im statischen System 56
3.3.4 Schwermetallmessung im kontinuierlichen System 58
3.3.5 Geprägte Matrix ... 63

4. Diskussion .. 66
4.1 Phytochelatin-Produktion und Immobilisierung 66
4.1.1 In-vivo-Induktion .. 66
4.1.2 In-vitro-Induktion .. 66
4.1.3 Zellaufschluss .. 67
4.1.4 Proteinfällung ... 68
4.1.5 Synthesetemperatur .. 69
4.1.6 Immobilisierung ... 70

4.2 Schwingquarze ... 73
4.2.1 Aufbringen der Einzelmolekülschichten ... 74
4.2.2 Aktivierung der Einzelmolekülschichten .. 77
4.2.3 Aufbringen der Proteinschicht ... 79
4.2.4 Stabilitätsuntersuchungen ... 81
4.2.5 Charakterisierung des statischen Systems 82
4.2.6 Schwermetallmessung im statischen System 86
4.2.7 Schwermetallmessung im kontinuierlichen System 89
4.2.8 Geprägte Matrix ... 93

5. Zusammenfassung .. 96

6. Literatur .. 98
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Vollständiger Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-MUO</td>
<td>11-Mercaptoundekanol</td>
</tr>
<tr>
<td>11-MUS</td>
<td>11-Mercaptoundekansäure</td>
</tr>
<tr>
<td>2-MEA</td>
<td>2-Mercaptoethylamin</td>
</tr>
<tr>
<td>AT-cut</td>
<td>im Winkel von 35° 10' relativ zur z-Achse aus einem Kristall geschnitten</td>
</tr>
<tr>
<td>c</td>
<td>quervernetzt (crosslinked)</td>
</tr>
<tr>
<td>cc</td>
<td>co-quervernetzt (co-crosslinked)</td>
</tr>
<tr>
<td>DDT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>DT</td>
<td>Dodenkanthiol</td>
</tr>
<tr>
<td>EDC</td>
<td>1-Ethyl-3-(3-dimethyl-aminopropyl)carbodiimid-Hydrochlorid</td>
</tr>
<tr>
<td>EDA</td>
<td>Ethyldiamin</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylen-diamin-tetra-acetat</td>
</tr>
<tr>
<td>g</td>
<td>Erdbeschleunigung</td>
</tr>
<tr>
<td>GDA</td>
<td>Glutardialdehyd</td>
</tr>
<tr>
<td>GSH</td>
<td>Glutathion</td>
</tr>
</tbody>
</table>
| HPLC | Hochdruck-Flüssigkeits-Chromatographie
 (High performance liquid chromatography) |
| MES | 2-Morpholino-ethansulfonsäure |
| MT-I | Methallothionein der ersten Klasse |
| MT-II | Methallothionein der zweiten Klasse |
| NHS | N-Hydroxy-succinimid |
| PC | Phytochelatin |
| PC-2 | Phytochelatin-2 |
| PC-3 | Phytochelatin-3 |
| PTMS | Propyltrimethoxysilan |
| PVA | Polyvinylalkohol |
| SAM | selbstorganisierende Einzelmolkeülischicht (self-assembling monolayer) |
| TA | α-Liponsäure (thiolic acid) |
| TMOS | Tetramethoxysilan |
| Unit | 1 µmol PC pro Stunde |
| Upm | Umdrehung pro Minute |
1. Einleitung

1.1 Schwermetalle

Einleitung

1 Meldung der STIFTUNG WARENTEST vom 27.08.2004
1.2 Mechanismen zur Schwermetalldetoxifikation

1.3 Schw ermetalldetektion

\(^2\) Bundesumweltamt

diesem Messprinzip, bei dem eine Hemmung einer katalytischen Reaktion auf die Anwesenheit von Schwermetallen hinweist, ist die notwendige Aufrechterhaltung der enzymatischen Reaktion. So ist – im günstigsten Falle – bei jeder Messung ein zusätzlicher Analyt der Probe zuzugeben, was das Messverfahren verkompliziert. Erschwerend kommt hinzu, dass die natürliche Konzentration des Zusatz-Analyten in der Probe nicht bekannt ist und somit auch dessen Gesamtkonzentration während der Messung.

Das grundsätzliche Prinzip, Schwermetalle reversibel durch spezielle Liganden zu binden, scheint aufgrund neuerer Literatur eine chancenreiche Grundlage für den Aufbau eines Biosensors zur Detektion dieser Metalle zu sein (Bontidean et al. 1998 und 2003). Um ein auswertbares Signal zu erhalten, wird eine technische Komponente benötigt, die die Komplexierung von Schwermetallen an chelatisierende Liganden messen und in lesbare Daten umwandeln kann.

1.4 Piezoelektrische Quarze

Abb. 1.3: Vereinfachte Elementarzelle eines SiO₂-Quarzes in normaler Stellung (links), bei Stauchung (Mitte) und bei Dehnung (rechts)

Der reziproke piezoelektrische Effekt basiert darauf, dass der Kristall einem elektrischen Feld ausgesetzt wird und dadurch seine Form ändert. Die Applikation eines elektrischen Feldes bewirkt eine Verlängerung bzw. Schmälerung des Quarzes; das Anlegen eines entgegengesetzten Feldes eine Verkürzung bzw. Verdickung. Wird eine alternierende Spannung appliziert, so dehnt und staucht sich der Quarz mit der Frequenz der Spannungsänderung (Galla und Steinem 2000).

Heutzutage werden piezoelektrische Quarze als Hochspannungsquellen in Feuerzeugen oder Gasanzündern, als Stellglieder für Kraft-Elektronenmikroskope und Lautsprecher sowie als Sensoren in Mikrofonen, elektrischen Transformatoren und Biosensoren eingesetzt. Der Einsatz von piezoelektrischen Quarzen als gravimetrischer Sensor in Biosensoren basiert auf dem oben beschriebenen Effekt der

Abb. 1.4: AT-Schnitt durch einen Quarzkristall

Um sich den reziproken piezoelektrischen Effekt zu Nutze zu machen, werden auf den geschnittenen Quarz zwei Goldelektroden aufgedampft und an eine Spannungsquelle angeschlossen. Zwischen den Elektroden bildet sich nun ein homogenes elektrisches Feld aus, was eine mechanische Verformung des Quarzes zur Folge hat. Bei Applikation einer oszillierenden Spannung wird der Quarz in alternierende Richtungen verformt, er gerät in Resonanz und schwingt. Die für die Analytik wichtige Eigenschaft piezoelektrischer Kristalle, Massen zu detektieren, wurde erstmals von Sauerbrey 1959 beschrieben. Die von ihm entwickelte Formel stellt für eine hinreichend dünne Schicht, die starr an den Quarz gebunden ist, den linearen Zusammenhang zwischen der Frequenzänderung des Quarzes und der Massenablagerung auf dem Quarz dar (Formel 1.1). Aus der Gleichung geht hervor, dass bei steigender Masse die Resonanzfrequenz des Quarzes sinkt. Somit kann im weitesten Sinne eine Masse, die sich auf dem Quarz abscheidet, „gewogen“ werden; der Quarz fungiert als Mikrowaage.
Einleitung

\[\Delta f = -2 \left(\frac{f_0^2}{A\mu_Q \rho_Q^{1/2}} \right) \Delta m \]

Formel 1.1: Sauerbrey-Gleichung: \(\Delta f \) = Frequenzänderung des Quarzes [Hz];
\(f_0 \) = Basisresonanzfrequenz des Quarzes [Hz]; \(A \) = piezoelektrisch aktive Fläche des Quarzes \([m^2]\); \(\mu_Q \) = Schermodul des Quarzes \([N/m^2]\); \(\rho_Q \) = Dichte des Quarzes \([g/cm^3]\); \(\Delta m \) = Massenänderung \([g]\)

Bei allen genannten Biosensoren besteht die besondere Aufgabe, die biologische Komponente auf dem Quarz – der technischen Komponente – zu immobilisieren. Hierfür haben sich so genannte „self-assembling-monolayer“ (SAMs) etabliert. Diese Einzelmolekülsschichten sind selbst organisierend und bilden dicht gepackte und
Einleitung

1.5 Aufgabenstellung

Die Methode der Massendetektion durch piezoelektrische Quarze und deren zunehmende Verwendung in der Biosensorik verspricht auch für die Schwermetallanalytik eine leistungsfähige technische Komponente zu sein. In Kombination mit Peptiden, die spezifisch Schwermetalle binden, wie Glutathion und Phytochelatin, sollte im Rahmen dieser Arbeit ein Biosensor entwickelt werden, der – ohne andere Kationen zu detektieren – zur Schwermetalldetektion und -quantifizierung eingesetzt werden kann.

2. Material und Methoden

2.1 Chemikalien

Acetylen
Messer-Griesheim (Bielefeld)

Agar
Difco Bacto Agar (Augsburg)

Ammoniumsulfat
Riedel-de-Haen (Seelze)

Bovine serum albumine (Fraction V)
Riedel-de-Haen (Seelze)

Bradford-Reagenz
Bio-Rad (München)

Dithiobisnitrobenzoat (Ellmann’s Reagenz)
Sigma-Aldrich (Steinheim)

DL-Dithiothreitol
Sigma-Aldrich (Steinheim)

Eialbumin
Riedel-de-Haen (Seelze)

Glukose-Monohydrat
Roquette (Lestrem, Frankreich)

Glutardialdehyd 25%
Sigma-Aldrich (Steinheim)

Hefeextrakt
Ohly (Hamburg)

L-Glutathion, reduziert
Sigma-Aldrich (Steinheim)

Magnesiumacetat
Riedel-de-Haen (Seelze)

Protein-Bioassay
Bio-Rad (München)

Silikonöl
Riedel-de-Haen (Seelze)

2.2 Mikroorganismen

Schizosaccharomyces pombe var. pombe D18 h⁻ (DSMZ Nr.: 3796)

2.3 Puffer und Medien

Puffer 1: 50 mM Tris-Acetat pH 8,0; 10 mM Magnesiumacetat; 1mM DDT;
Puffer 2 (Aktivitätspuffer): Puffer 1; 4 mM GSH; 0,2 mM Kadmium
YE-Medium: 3 % Glukose und 0,5 % Hefeextrakt in deionisiertem Wasser
2.4 Gewinnung der biologischen Komponente

2.4.1 In-vivo-Induktion

Die zu Beginn dieser Arbeit angewandte Methode der Phytochelatingewinnung erfolgte nach der klassischen In-vivo-Induktion der Hefe *Schizosaccharomyces pombe* mit Kadmiumchlorid. Dazu wurden 20 mL YE-Medium in 100-mL-Erlenmeyerkolben von einer 48 h bei 30 °C bebrüteten YE-Platte angeimpft. Diese Vorkultur diente nach 24-stündigem Schütteln bei 30 °C auf einem Rundschüttler (300 Upm) zum Animpfen von 100 mL YE-Medium in einem 1-Liter-Fernbachkolben. Nach 24-stündigem Schütteln bei 30 °C wurde die Hauptkultur mit 0,2 molarer Kadmiumchloridlösung induziert, so dass eine Endkonzentration von 0,2 mM erreicht wurde. Nach weiterer 24-stündiger Inkubation wurden die Hefen durch 20-minütige Zentrifugation bei 5.000 g geerntet. Die geernteten Zellen wurden gefriergetrocknet und trocken aufgeschlossen. Dazu wurden 100 mg des Lyophilisates mit 500 mg Glaskugeln von 0,2 mm Durchmesser gemischt und bei 25 Hz in der Kugelmühle (Retsch, Haan) 20 Minuten lang vermahlen. Das Mahlgut wurde in 1 mL destilliertem Wasser aufgenommen und zentrifugiert. Die weitere Behandlung des Überstandes setzte sich aus einer 5-minütigen Inkubation mit 150 µL NaBH₄-Lösung (1 mg/mL in 2,5 N NaOH), einer 10-minütigen Fällung mit 200 µL 3,5 N HCl auf Eis und anschließender Zentrifugation bei 15.000 g zusammen. Der nun erhaltene Überstand konnte direkt zur Analyse zu je 1 mL in HPLC-Vials gefüllt werden. Diese Proben wurden als Standard herangezogen, um die alternative Synthese der Phytochelatine vergleichen zu können.

2.4.2 In-vitro-Induktion

Fermentation von *Schizosaccharomyces pombe*

Die Vorkulturen für die Fermentationen wurden in mit 100 mL YE-Medium befüllten 1-Liter-Erlenmeyerkolben mit Schikanen angezogen. Inkubiert wurden die Kolben für 24 Stunden bei 30 °C auf einem Rundschüttler und 300 Upm. Die Fermentationen erfolgten ebenfalls mit YE-Medium in 2-Liter-, 5-Liter- und 15-Liter-Fermentern der Firma B. Braun Biotech International GmbH (Melsungen), wobei die Inokulationsmenge immer 10 % des Volumens der Hauptfermentation entsprach. Um eine optimale Zellausbeute zu erreichen, wurden der pH-Wert und der vorliegende Sauerstoffpartialdruck im Medium reguliert. Die Konstanz des pH-Wertes gewähr-
Material und Methoden

leistete das gesteuerte Zupumpen von 2 M NaOH, der gleichbleibende Sauerstoff-
partialdruck von 50 % wurde über die Rührerdrehzahl geregelt. Es wurden
Fermentationen mit pH-Werten von 5, 6, 6,5, 7 und 8 durchgeführt. Die Doku-
mentation der optischen Dichte erfolgte durch stündliche Messung bei 620 nm gegen
Luft. Zu Beginn der stationären Phase wurden die Hefen durch 20-minütige
Zentrifugation bei 15.000 Upm geerntet, einmal mit 100 mL Puffer 1 gewaschen, zur
weiteren Aufbewahrung in Puffer 1 im Verhälttnis 1:10 resuspendiert und bei -20 °C
eingefroren. Zur Erhaltung der Hefen wurden alle zwei Wochen neue Quadranten-
ausstriche auf YE-Agar angefertigt.

2.5 Reinigung des Enzyms Phytochelatin-Synthase

Die durch die Fermentationen erhaltenen Hefe-Zellen wurden durch unterschiedlich
langes Mahlen in der Kugelmühle (Dispermat SL, VMA Getzmann, Reichshof) aufge-
schlossen. Es wurden Zeitspannen in Minuten-Abschnitten von 5 bis 20 Minuten
gewählt und der Aufschlussgrad durch Lebendzellzahlbestimmung (Kap. 2.5.2),
Proteingehalt (Kap. 2.5.1) und Enzymaktivität (Kap. 2.7) bestimmt. Die Temperatur
des Mahlgutes wurde vor Beginn des Aufschlusses auf 4 °C gesenkt und während
des Mahlens durch Einsatz eines Kühlbades unter 20 °C gehalten. Nach Zentri-
fugation des aufgeschlossenen Materials für 10 Minuten bei 15.000 g wurde der
Überstand zur weiteren Behandlung abgenommen und auf Proteingehalt und
Aktivität überprüft.

2.5.1 Proteinbestimmung nach Bradford

Die Bestimmung des Gesamtproteingehaltes in allen Enzymproben und den
vorliegenden Waschwässern wurde nach der Methode von Bradford (1976) durch-
geführt. Die photometrische Detektion beruht auf der Bindung des Farbstoffes
Coomassie Brilliantblau G-250 an Proteine in saurer Lösung. Alle Versuchsansätze
bestanden aus 800 µL der Probelösung und 200 µL Bradford-Reagenz (Bio-Rad,
München). Die Proteinkonzentration der eingesetzten Proben betrug jeweils 1-25 µg
Protein pro mL.
2.5.2 Lebendzellzahlbestimmung

Die Effizienzermittlung des Zellaufschlusses geschah durch mikroskopisches Auszählen der unbeschädigten Zellen in einer Zählkammer nach Thoma (Tiefe 0,02 mm, Feldgröße 0,0025 mm).

2.5.3 Ammoniumsulfat-Fällung

Zur Teilreinigung der Phytochelatin-Synthase kam eine Ammoniumsulfat-Fällung zum Einsatz. Hierbei wurde der Effekt genutzt, dass Enzyme je nach ihrer Löslichkeit in einer Salzlösung bei bestimmten Salzkonzentrationen ausfallen. Die Fällung wurde mit zuvor gemörsertem Ammoniumsulfat durchgeführt, das langsam, in kleinen Mengen zu der Enzymlösung zugegeben wurde. Der Überstand des Ansatzes mit der Ammoniumsulfatkonzentration, in der das Enzym gerade noch löslich war (50%), wurde abgenommen und erneut mit Ammoniumsulfat versetzt, bis eine Konzentration erreicht wurde, die das Enzym ausfallen ließ. Nach erneuter Zentrifugation (10 Minuten, 10.000 g) wurde das pelletierte Enzym in 5 mL Puffer 1 gelöst und in einem Dialyseschlauch (neolab, Heidelberg) gegen 5 L Puffer 1 entsalzt. Die Lagerung aller dialysierten Proteinfraktionen erfolgte nach Lyophylisation bei -20 °C.

2.5.4 Ethanolfällung

Die Ethanolfällung erfolgte in Eppendorf-Reaktionsgefäßen auf Eis. Es wurden 500 µL des Rohextraktes eingesetzt und mit 50, 100, 250, 500 und 1.000 µL vorgekühltem Ethanol (-20 °C) vermischt. Der Ethanol wurde tropfenweise und unter ständigem Schütteln zugesetzt. Nach 30-minütiger Inkubation im Überkopfschüttler bei 4 °C folgte eine Zentrifugation (10 Minuten, 10.000 g) und die Abtrennung des Ethanol des Überstandes und des resuspendierten Pellets durch eine Vakumzentrifuge (Savant, Holbrook, New York, USA).

2.6 Immobilisierung der Phytochelatin-Synthase

2.6.1 Quervernetzung

Um das teilgereinigte Enzym zu größeren Aggregaten zu verbinden, wurde eine Quervernetzung mit Glutardialdehyd vorgenommen. Hierzu wurden 10 mg der lyo-
phylisierten Proteinfraktion in 1 mL Puffer 1 und 0,5 mL 25%iger Glutardialdehyd-
lösung gelöst, gut gemischt und für 2 Stunden bei 30 °C inkubiert. Zur Co-Immobilisierung des Enzyms wurden dem oben beschriebenen Ansatz 100 mg Rind-
serumalbumin hinzugefügt und die Menge an 25%iger Glutardialdehydlösung
verdoppelt. Nach Zentrifugation des vernetzten Proteins bei 4.800 g für 20 Minuten
und zweimaligem Waschen wurde das Immobilisat in 5 mL des oben genannten
Puffers aufgenommen und in einem Ultraturrax (IKA Labortechnik, Staufen) fein
homogenisiert. Um eine Denaturierung der Proteine zu verhindern, erfolgte die
Weiterverarbeitung der Immobilisate unmittelbar nach der Homogenisierung.

2.6.2 Alginat-Einhüllung

Zur Einhüllung des vernetzten Enzyms wurde 4%iges Natriumalginat verwendet. Das
gesamte Volumen (5 mL) der durch die Quervernetzung produzierten Immobilisate
(Kap. 2.6.1) wurde mit 5 mL 4%igem Alginat vermischt und durch eine Kanüle in
100 mL einer, mit einem Magnetrührer gerührten, 2%igen Kalziumchlorid-Lösung
ingetropft. Zur vollständigen Aushärtung wurden die Kugeln 1 Stunde unter
ständigem Rühren in der Lösung belassen. Die Bestimmung des Immobilisierungs-
grades erfolgte durch die Überprüfung der Härtungslösung auf ihren Proteingehalt
(Kap. 2.5.1).

2.6.3 PVA-Einhüllung

Eine Alternative zur Einhüllung in Alginat stellt das Immobilisieren in synthetischen
Matrices dar. Hierzu wurden 3 g Polyvinylalkohol (PVA) und 3 g Polyethylenglycol
(PEG) 400 in 21 mL 50 mM Puffer 1 bei 90 °C gelöst. Nach Abkühlung auf Raum-
temperatur folgte die Verseifung durch Zugabe von 1,5 mL einer 1,5 M NaOH-
Lösung. Die abschließende pH-Regulierung auf pH 7,9 wurde durch die Zugabe von
1 M Essigsäure erreicht. Der eigentliche Einschluss der Biokatalysatoren erfolgte
durch das Suspendieren der in Kapitel 2.7.1 erwähnten Immobilisate im Volumen-
verhältnis 1:3 in die Matrix und darauffolgendes Eintropfen der Suspension in -70 °C
kaltes Silikonöl. Die so entstandenen Kugeln wurden mit Hexan gewaschen, ge-
trocknet und zur Aktivitätsbestimmung eingesetzt.
2.6.4 Sol-Gel-Einhüllung

Die Herstellung des Sol-Gel-Immobilisates wurde ohne ein vorheriges Quervernetzen des Rohextraktes durchgeführt. Dazu wurden 100 mg des Lyophilisates in 1 mL Puffer 1 gelöst. Ferner wurden 250 µL 4%iges PVA, 125 µL 1 M NaF, 250 µL Isopropylalkohol, 1.100 µL PTMS (Propyltrimethoxysilan) und 370 µL TMOS (Tetramethoxysilan) in dieser Reihenfolge miteinander gemischt. Nach Beginn der Gelierung bei kräftigem Schütteln, wurde der Ansatz 10 Minuten auf Eis und anschließend 24 Stunden bei 20 °C gelagert. Das an Luft getrocknete Immobilisat wurde zu einem Pulver zerstoßen, in 10 mL 50 mM Tris-HCl-Puffer aufgenommen und 10 Minuten in einem Überkopfschüttler gewaschen. Nach Zentrifugation bei 5.000 g und 4 °C folgte die erneute Trocknung des Immobilisates bei 30 °C und die Untersuchung des Waschwassers auf den Proteingehalt (Kap. 2.5.1) und die Aktivität (Kap. 2.7). Das getrocknete Sol-Gel wurde direkt nach Trocknung auf seine Aktivität untersucht (Kap. 2.7).

2.7 Aktivitätstest

Die Aktivitätsbestimmung der Phytochelatin-Synthase und aller Immobilisate dieses Enzmys erfolgte über eine Stunde bei 30 °C im Aktivitätspuffer (Kap. 2.3). Blindproben wurden ohne die Zugabe von Glutathion im Puffer durchgeführt. Der Eignungstest der einzelnen Immobilisate wurde durch den Einsatz in kleinen Reaktionssystemen realisiert. Diese Reaktionssysteme bestanden aus 2-mL-Eppendorfrreaktionsgefäßen, die mit einem Milliliter des Aktivitätspuffers und 2 Immobilisat-Kugeln, bzw. einer äquivalenten Menge an quervernetztem, Sol-Gel-eingehüllten oder nativem Enzym, befüllt waren. Nach Abschluss der Reaktion wurden 150 µL Natriumborhydrit-Lösung (1 mg/mL NaBH₄ in 2,5 N NaOH) zu einem Milliliter der Probe zugegeben und der Ansatz 5 Minuten bei Raumtemperatur belassen. Es folgte die Zugabe von 200 µL 3,5 N HCl auf Eis, um die vorhandenen Proteine in dem Reaktionsansatz zu fällen. Nach Zentrifugation bei 15.000 g wurde der Überstand abgenommen und analysiert. Die Auswertung der Tests erfolgte durch den Einsatz einer HPLC-Analytik (Beckmann Gold, Krefeld) unter Verwendung einer LiChrosorb RP 18-Säule. Die Flussrate betrug 0,8 mL/min. bei einem Probenvolumen von 0,05 mL und 25 °C. Die gebildeten Phytochelatine konnten durch die in Tab. 2.1 aufgeführten Parameter der HPLC als entsprechende Peaks identifiziert
werden. Die in der Tabelle aufgeführten Laufmittel A und B bestehen aus Acetonitril (A) und 0,05%iger Phosphorsäure (B) in Wasser. Die Detektion erfolgte durch das aufzeichnen der UV-Absorption bei 205 nm.

Tab. 2.1: HPLC-Routine zur Bestimmung der Phytochelatin-Konzentration

<table>
<thead>
<tr>
<th>Zeit [min]</th>
<th>Fluss [mL/min]</th>
<th>Laufmittel-Zusammensetzung</th>
<th>Dauer [min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>0,6</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>0,6</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>42</td>
<td>0,6</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>43</td>
<td>0,6</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>53</td>
<td>0,6</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>60</td>
<td>0,6</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Zur spezifischen Detektion SH-Gruppen-reicher Substanzen wurde eine Nachsäulendervatisierung mit Ellmann’s-Reagenz (0,1 mg/mL Ellmann’s Reagenz in 50 mM Kaliumphosphatpuffer, pH 8,0) durchgeführt. Sulfhydryl-Gruppen waren nach der Derivatisierung spektrometrisch bei 410 nm nachweisbar. Diese Detektionsmethode wurde unter denselben Bedingungen durchgeführt, jedoch bei einer Flussrate von 1 mL/min.

2.8 Kontinuierliche Herstellung von Phytochelatin

Die kontinuierliche Produktion erfolgte in 27-mL-Plexiglassäulen mit Temperiermantel. Die Säulen (s. Abb. 2.1) wurden von den Werkstätten der RWTH Aachen gebaut. Die Synthese des Phytochelatins konnte unter kontinuierlichem Durchfluss des Aktivitätspuffers (0,7 mL/min, 0,5 mL/min bzw. 1 mL/min) durchgeführt werden. Die Rückhaltung der Immobilisate wurde durch ein Metallsieb sichergestellt.
Material und Methoden

Abb. 2.1: Detail- und Gesamtansicht des Versuchsaufbaus zur kontinuierlichen Produktion von Phytochelatinen

2.9 Schwingquarze

Für die Konstruktion des Biosensors wurden 10 MHz, AT-geschnittene Quarzkristallquarze mit beidseitiger Goldbeschichtung (FOQ, Bad Rappenau) verwendet (Abb. 2.2). Alle Quarze besaßen angelötete Kontakte und einen Isolierrungs- und Stabilitätssteg.

Abb. 2.2: Schwingquarze für die Schwermetallanalytik

2.9.1 Reinigung der Schwingquarze

Zur Vorreinigung der Quarze wurden diese mit kochender „Piranha-Lösung“ (30%ige Wasserstoffperoxidlösung und 98%ige Schwefelsäure im Verhältnis 1:3) für 10 Minuten behandelt, indem die Goldelektroden mit der Lösung benetzt wurden. Die

Abb. 2.3: Edelstahlkammer zur Modifizierung der Schwingquarze

2.9.2 SAMs (self-assembling monolayers)

2.9.3 Aufbringen der biologisch aktiven Komponenten

Das Aufbringen einer Mono-Enzymenschicht erfolgte durch die Aktivierung der Carboxyl-Endgruppen der α-Liponsäure bzw. der 11-Mercaptoundekansäure durch
Material und Methoden

Behandlung mit einer EDC/NHS-Lösung. Die Aktivierungslösung bestand aus einem 0,1 M MES-Puffer pH 6,2 in dem 50 mM EDC (1-Ethyl-3-(3-dimethyl-aminopropyl) carbodiimid-Hydrochlorid) und 50 mM NHS (N-Hydroxy-succinimid) gelöst waren. Nach Auftropfen von 150 µL der Aktivierungslösung erfolgte die Reaktion für 5 Stunden bei Raumtemperatur und wurde durch Spülen mit Reinst-Wasser beendet. Anschließend wurden die biologischen Komponenten jeweils zu 2 mg/mL in 50 mM Tris-HCl-Puffer pH 9,0 gelöst und 150 µL dieser Lösung auf die Quarze aufgebracht. Die Kopplungsreaktion vollzog sich zuerst für 2 Stunden bei Raumtemperatur, dann weitere 20 Stunden bei 4 °C.

Die Modifikation der Quarze mit einer schwermetall-bindenden Matrix folgte bis zur Aktivierung der SAM dem oben aufgeführten Schema. Das Aufbringen der biologischen Matrix wurde nach zwei verschiedenen Methoden durchgeführt. Die erste Methode vereinte die Aktivierung der SAM mit der Ausbildung der Matrix. Dazu wurde zuerst ein Komplex aus der biologischen Komponente (Glutathion und Phytochelatin) und dem zu analysierenden Schwermetall gebildet. Dies wurde in 300 µL eines 100 mM MES-Puffer pH 6,2 mit 8 mM Glutathion und 2 mM des zu detektierenden Schwermetallions durchgeführt. Nach Zugabe von 150 µL 50 mM EDC und 50 mM NHS und kurzem Durchmischen wurde die Lösung zu je 150 µL in die Modifikationskammern gegeben. Die Reaktionszeiten betrugen auch hier 2 Stunden bei Raumtemperatur und 20 Stunden bei 4 °C. Anschließend wurden die Quarze mit Reinst-Wasser gespült und direkt in die Messkammern eingespannt.

2.9.4 Überprüfung der Beschichtungen

Eine Kontrolle, ob die durchgeführten Modifikationen des Quarzes erfolgreich waren, erfolgte durch verschiedene Messungen. Die Qualität der gebildeten Einzelmolekül-
schicht, sowie der aufgebrachten, biologisch aktiven Schicht wurde mit Hilfe der
zyklischen Voltammetrie eruiert. Hierbei handelt es sich um eine Messmethode, bei
der ein Redoxpaar (Kalium(II)hexacyanoferrat) durch eine im Gradienten zyklisch
wechselnde Spannung reduziert bzw. oxidiert wird. Der resultierende Stromfluss gibt
Auskunft über die Qualität der Beschichtung der modifizierten Elektrode. Der
Versuchsaufbau bestand aus einer Teflonkammer, in die der Quarz fixiert wurde,
einer Referenzelektrode (Ag/AgCl) und einer Hilfselektrode aus 0,1 mm dickem
Platindraht. Ein Potentiostat der Firma EG&G, Gaithersburg, USA, (Model 236A)
diente als Spannungslieferant und zur Aufnahme der resultierenden Stromstärken.
Aufgezeichnet wurden beide Werte über eine PCLD-8115 Analog-Digital-Wandler-
Karte und dem Programm FlexPro 2 (Geitmann, Menden). Die Messungen erfolgten
in 10 mL einer 5 mM Kalium(II)hexacyanoferrat-Lösung, der 0,5 Mol/L Kaliumchlorid
zugesetzt wurde. Ein Foto der Messanordnung ist der Abb. 2.4 gezeigt. Parallel
wurde die Kinetik der Bindung der Einzelmolekülscricht sowie der biologischen
Komponente an den Quarz durch simultane und Start-Stop-Messungen der
Quarzfrequenz festgestellt. Der Versuchsaufbau hierzu ist im Kapitel 2.10 näher
beschrieben.

Abb. 2.4: Messaufbau der zyklischen Voltammetrie
2.10 Messaufbau des Biosensors

Abb. 2.5: Messkammer ohne (links) und mit (rechts) aufgeschraubtem Flusskopf

Um eine kontinuierliche Schwermetallmessung zu ermöglichen, wurde eine HPLC-Pumpe (Tegmenta, Rotkreuz, Schweiz) zur Generierung eines kontinuierlichen und pulsationsarmen Flüssigkeitsstromes verwendet. Die Flussraten wurden von 0,05 mL/min bis 2 mL/min variiert. Durch den Einsatz eines 6-Wege-Ventils und der zugehörigen Probenschleife (2 mL) konnte eine pulsationsarme und genaue Zugabe der Schwermetall- und Regenerationslösung gewährleistet werden.

Das durchgeführte Messprotokoll kann in fünf Schritte unterteilt werden: Nach Erreichen einer Basislinie wurde die schwermetallhaltige Probenlösung in die Probenschleife des 6-Wege-Ventils injiziert und dem Pufferstrom übergeben. Der Spülvorgang ergab sich automatisch durch die Konstruktion des Gesamtmissaufbaus: Durch die direkte Folge des Laupuffers nach der injizierten Probe fügte sich der Waschschritt direkt an die Bindung der Schwermetalle an. Nach erneuter
Einstellung einer konstanten Frequenz wurde der Sensor durch die Zugabe von 10 mM DDT in 100 mM MES-Puffer pH 6,0 regeneriert. Der Injektion folgte wiederum ein Waschschritt, der den Messzyklus komplettierte.

Abb. 2.6: Gesamtaufbau zur kontinuierlichen Messung von Schwermetallen

Das Messprotokoll der ansatzweisen Messung entspricht dem der kontinuierlichen Messung, die Probenaufgaben und Waschschritte wurden jedoch durch das Aufpipettieren von je 100 µL der entsprechenden Reagenzien vollzogen.
3. Ergebnisse

3.1 Gewinnung von Phytochelatin

3.1.1 In-vivo-Induktion

Ursprünglich diente die In-vivo-Induktion der Phytochelatin-Synthese in *Schizosaccharomyces pombe* dem Nachweis, in wie weit sich genetische Modifikationen auf die Phytochelatin-Produktion auswirken. Das Institut für Mikrobiologie der RWTH-Aachen, bei dem die Untersuchungen durchgeführt wurden, beschäftigt sich seit langem mit der Hefe *Schizosaccharomyces pombe*, ihrer Schwermetallresistenz und Phytochelatinproduktion sowie der Detektion dieser schwermetallbindenden Peptide. Daher bot die Zusammenarbeit mit dem Lehrstuhl für Mikrobiologie eine ideale Grundlage zur mikrobiellen Produktion und Detektion von Phytochelatinen.

\(^4\) Persönliches Gespräch mit Dr. Martin Zimmermann, Institut für Mikrobiologie der RWTH-Aachen
Ergebnisse

Modifizierung der Sulphydryl-Gruppen Phytochelatin durch den Einsatz eines präparativen HPLC-Laufes gereinigt und gewonnen werden (Kap. 2.7).

![Absorption bei 205 nm und 410 nm](image)

Abb. 3.1: Ausschnitt aus Chromatogrammen der Proteinbestimmung (205 nm) und der PC-2-bzw. PC-3-Bestimmung (410 nm) zur Identifizierung von Phytochelatinen

3.1.2 In-vitro-Induktion

Der OD-Wert folgte einer typischen Wachstumskurve unter Ausbildung einer Anwachs-, einer logarithmischen und einer stationären Phase. Inmitten der logarithmischen Phase war eine Anhebung der Rührerdrehzahl zu bemerken, die mit der steigenden Zelldichte an Höhe gewann. Ab ca. 17 Stunden konnte eine konstant bleibende Drehzahl beobachtet werden, die nach ca. 21 Stunden nach Fermentationsbeginn abfiel. Die volumetrische Produktivität der Fermentation betrug 0,7 gTS/Lh.

3.1.3 Zellaufschluss

Der Aufschluss von *S. pombe* zur Gewinnung der Phytochelatin-Synthase wurde in einer gekühlten, kontinuierlich arbeitenden Zellmühle durchgeführt und, wie in Abb. 3.3 zu sehen, über 31 Minuten verfolgt. Die Überprüfung des Aufschlussgrades erfolgte durch das Auszählen der noch intakten Zellen (Kap. 2.5.2) in einem Mikroliter des Mahlgutes zu den gegebenen Zeiten.

3.1.4 Proteinfällung

Um in späteren Experimenten Phytochelatine *in-vitro* herstellen zu können, ist es von Vorteil Biokatalysatoren mit einer möglichst hohen spezifischen Aktivität einzusetzen. Dieses Ziel kann mit einer oder mehreren Fällungen des Rohextraktes, in dem sich sämtliche Enzyme befinden, erreicht werden. Neben der Lösungsmittelfällung (Kap. 2.5.4), die keinerlei brauchbaren Ergebnisse lieferte, ist die Ammoniumsulfat-Präzipitation eine weitere einfache und häufig verwendete Fällungsmethode, die
Ergebnisse

auch im weiteren zur Konzentration des gewünschten Proteins – der Phytochelatin-Synthase – angewandt wurde (Kap. 2.5.3). Im Vorfeld erhaltene Ergebnisse aus Aktivitätstests zeigten, dass bei einer 50%igen Sättigung des Rohextraktes die gesamte Aktivität der Phytochelatin-Synthase im Überstand der mit Salz versetzten Probe vorhanden war (Tab. 3.1). Durch das Einstellen höherer Konzentrationen bis 70 % konnte sowohl im Überstand als auch im Pellet der zentrifugierten Proben Aktivität nachgewiesen werden.

<table>
<thead>
<tr>
<th>Tab. 3.1: Aktivitätsverteilung der Phytochelatin-Synthase zwischen Überstand und Präzipitat verschiedener Ammoniumsulfat-Fällungsstufen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Überstand</td>
</tr>
<tr>
<td>Prämipitat</td>
</tr>
</tbody>
</table>

Die Behandlung des Rohextraktes mit Ammoniumsulfat bis zu einer Sättigung von 50 % resultierte in einer Erhöhung der spezifischen Aktivität um das 11fache. Wurde die Salzkonzentration des Überstandes weiterhin auf eine Sättigung von 75 % erhöht, steigerte sich die spezifische Aktivität der Phytochelatin-Synthase im Präzipitat gegenüber der des Rohextraktes um das 18fache. In Abb. 3.4 ist die Entwicklung der spezifischen Aktivität durch die vollzogenen Fällungsschritte aufgetragen.
Abb. 3.4: Vergleich der spezifischen Aktivitäten der Phytochelatin-Synthase in verschiedenen Fällungsstufen durch eine Ammoniumsulfat-Präzipitation bei 8 °C

3.1.5 Synthesetemperatur

Um die optimale Temperatur für die In-vitro-Synthese von Phytochelatin durch die PC-Synthase zu ermitteln, müssen außer dem Temperaturoptimum des Enzyms auch temperaturabhängige Abbauprozesse der Substrate mit einbezogen werden. Dies gilt im Besonderen für das als Oxidationsschutz verwendete Dithiothreitol (DTT). Vor allem Glutathion, welches als Baustein bei der PC-Synthese unbedingt von Nöten ist, wird durch oxidative Prozesse modifiziert und steht nicht mehr zum Aufbau von Phytochelatin zur Verfügung. Das Additiv DTT, welches reduzierend auf Disulfidbrücken und oxidierte Sulfhydryle wirkt, soll diese Oxidation von Glutathion verhindern bzw. rückgängig machen. Da Oxidationsreaktionen im Allgemeinen temperaturabhängig sind, müssen sie ebenso wie das Temperaturoptimum des Enzyms mit zur Ermittlung der Synthesetemperatur herangezogen werden. Abb. 3.5 zeigt die spezifische Aktivität und das Auftreten von oxidiertem DTT in Abhängigkeit dreier verschiedener Temperaturen.
Aus der Abb. 3.5 ist zu ersehen, dass mit steigender Temperatur eine vermehrte Oxidation des DTT auftritt. Die Oxidation des DTT korreliert nahezu linear mit dem Anstieg der Temperatur, die Aktivität der PC-Synthase allerdings nicht. Von 5 °C bis 15 °C ist nur ein geringer Anstieg der spezifischen Aktivität zu verzeichnen, die Steigerung der spezifischen Aktivität von 15 °C zu einer Inkubationstemperatur von 25 °C entspricht dem zehnfachen der vorher betrachteten Erhöhung. Die Oxidation des DTT steigt mit steigender Temperatur rapide an (+ 70 %), während der Temperaturanstieg nur eine relativ geringe Auswirkung auf die spezifische Aktivität der PC-Synthase zeigt (+ 22 %). Nach Berücksichtigung dieser Ergebnisse wurde die Standardprozedur zur Phytochelatin-Synthese bei 5-8 °C durchgeführt.

3.1.6 Immobilisierung

Zur besseren Übersicht der Ergebnisse wird dieses Kapitel nach den Einhüllungsmatrices gegliedert. Eingehüllt wurden grundsätzlich der Rohextrakt (RE) und das resuspendierte Präzipitat der 75 % fraktionierten Ammoniumsulfat-Fällung in quer- und co-quer vernetzter (75 % c) und co-quer vernetzter (75 % cc) Form. Den Immobilisierungsgrad der verschiedenen Vernetzungs- und Einhüllungs-Typen zeigt Abb. 3.6. Es ist zu erkennen, dass eine Vernetzung des Proteins für einen höheren Immobilisierungsgrad unabdingbar ist, da ohne eine vorherige Verknüpfung der Immobilisierungsgrad nur 70 bis 80 % beträgt. Generell verbessert sich die Effizienz der Proteinrückhaltung durch das Quervernetzen und das Co-quervernetzen. Allein der Einschluss in Sol-Gel lässt einen nahezu 100%igen Immobilisierungsgrad erkennen.

![Diagramm](attachment:fig3_6.png)

Abb. 3.6: Vergleich der Immobilisierungseffizienz der verwendeten Immobilisate
(75 % = Präzipitat der fraktionierten 75 % Ammoniumsulfat-Fällung; c = quervernetzt; cc = co-quervernetzt)

Die generelle Fähigkeit der Immobilisate, über einen längeren Zeitraum Phytochelatin bilden zu können, wurde, um die hohe Anzahl der einzelnen Untersuchungen überblicken und durchführen zu können, durch den Einsatz von zwei Immobilisatkugeln bzw. einer entsprechenden Menge Sol-Gel-Immobilisats in einem Milliliter des Inkubationspuffers überprüft. Die Enzymaktivität „Unit“ wurde als µM gebildetes Phytochelatin-2 pro Stunde definiert. „U/g“, die spezifische Aktivität, bezieht sich auf ein Gramm eingesetztes Protein. Im Folgenden werden die
Ergebnisse

Charakteristika der einzelnen Immobilisate nach Immobilisierungsmatrix gestaffelt untersucht.

Sol-Gel

Alginat

![Diagramm](attachment:Diagramm.png)

Abb. 3.7: Entwicklung der spezifischen Aktivität des nativen, quervernetzten (c) und coquervernetzten (cc) Präzipitates der fraktionierten 75 % Ammoniumsulfat-Fällung (75 %), eingehüllt in Alginat

In Abb. 3.7 ist zu erkennen, dass die spezifische Aktivität des in Alginat eingehüllten 75 % Präzipitates in den ersten drei Tagen um jeweils 50 % der vorhergehenden Aktivität absank. Ab dem dritten Tag war eine in etwa gleich bleibende spez. Aktivität zu verzeichnen, wobei der Trend zu einem weiteren Absinken der Aktivität vorherrschte. Die vernetzten Proteinfraktionen wiesen schon zu Beginn der Aufzeichnungsphase eine sehr geringe Aktivität von ungefähr einem Zehntel bis einem Hundertstel der Aktivität der nicht vernetzen Proteinfraktion auf. Diese
geringen Aktivitäten blieben hingegen bis zum Abbruch der Messungen stabil und durch die Quervernetzung wurde der Ausblutungsgrad der Immobilisate entscheidend verringert (Abb. 3.8).

![Graph](image.png)

Abb. 3.8: Ausblutungsverhalten des nativen, quervernetzten (c) und co-quervernetzten (cc) Präzipitates der fraktionierten 75 % Ammoniumsulfat-Fällung (75 %), eingehüllt in Alginat

Bluteten aus den nicht vernetzten Immobilisaten nach fünf Tagen bis zu 65 % des Proteins aus, konnte die Vernetzung den prozentualen Verlust an Protein auf 4 % durch die Quervernetzung und 1,5 % durch die Co-Quervernetzung senken. Die erhaltenen Ergebnisse des Ausblutungsverhaltens des in Alginat eingehüllten 75 %-Präzipitates (65 % nach fünf Tagen) unterstützen weiterhin, dass die Durchführung der PC-Synthese bei 8 °C vorgenommen werden sollte. Dies wird weiterhin durch die Ergebnisse aus den Kadmiumsorptionsversuchen untermauert (Abb. 3.9).
Ergebnisse

Abb. 3.9: Kadmium-Aufnahme der Alginat-Immobilisate mit nativem, quervernetztem (c) und co-quervernetztem (cc) Präzipitat der fraktionierten 75 % Ammoniumsulfat-Fällung (75 %)

Während der niedrigen Temperatur von 8 °C kam es zu einer Kadmiumaufnahme der Immobilisate von 5-8 %. Die Erhöhung der Temperatur resultierte in einer Kadmiumaufnahme in die Alginat-Immobilisate von ca. 50 % innerhalb von fünf Tagen. Da die Kadmiumaufnahme in bzw. die Kadmiumbindung der Immobilisate sich negativ auf die Induktion des Enzyms auswirkt, ist eine niedrige Synthesetemperatur hier von Vorteil.

PVA
Eine weitere Methode, Enzyme zu immobilisieren, bietet die Umhüllung durch das kryogelierende Polymer PVA. Auch hier wurde das durch die fraktionierte Präzipitation gewonnene 75 %-Pellet nativ, quervernetzt und co-quervernetzt zur Immobilisierung eingesetzt. Die Entwicklung der spezifischen Aktivität der verschiedenen Immobilisate ist in Abb. 3.10 dargestellt.
Wieder war eine starke Aktivitätsabnahme des nativ in PVA eingehüllten 75 % Pellets nach dem ersten Reaktionstag zu erkennen. Allerdings belief sich die Abnahme auf knapp 60 % des Ausgangswertes, setzte sich aber an den darauf folgenden Tagen nicht fort. Ab dem zweiten Tag blieben die Werte in etwa stabil, zum Ende der Messung war ein weiterer Abfall der Aktivität zu verzeichnen. Durch die Vernetzung des Präzipitates wurden spezifische Aktivitäten, die in etwa einem Zehntel bis einem Fünfzigstel der Aktivität des nicht vernetzten Präzipitates entsprachen, erreicht. Auch hier (den ersten Tag ausgenommen) war kein signifikanter Aktivitätsverlust über den Reaktionszeitraum zu erkennen.

Das Ausbluten der Proteine aus der PVA-Matrix konnte durch die Vernetzung des Präzipitates von durchschnittlich 25 % auf durchschnittlich 9 % über fünf Tage gesenkt werden. Durch die Co-Quervernetzung gelang eine Erniedrigung des Ausblutens auf durchschnittlich 4 % über fünf Tage (Abb. 3.11).
Ergebnisse

Abb. 3.11: Ausblutungsverhalten des nativen, quervernetzten (c) und co-quervernetzten (cc) Präzipitates der fraktionierten 75 % Ammoniumsulfat-Fällung (75 %), eingehüllt in PVA

3.1.7 Kontinuierliche Phytochelatin-Produktion

3.2 Schwingquarze

3.2.1 Reinigung der Schwingquarze

Die während des gesamten Forschungsprojektes eingesetzten piezoelektrischen Schwingquarze wurden von der Firma FOQ (Bad Rappenau) bezogen. Zur weiteren Verwendung als Komponente des Biosensors mussten die Quarze im Vorfeld gereinigt werden, um eine lückenlose und gleichmäßige Verteilung der später aufgebrachten Beschichtung garantieren zu können. Der Reinigungserfolg konnte mit den zur Verfügung stehenden Analysetechniken nur indirekt über die Qualität der Beschichtung veranschaulicht und nachgewiesen werden. Abb. 3.14 zeigt – wie in allen folgenden Graphen verwendet – auf der y-Achse den Frequenzunterschied, d.h. den Wert, um den sich die zu diesem Zeitpunkt gemessene Frequenz im Bezug auf die Ausgangsfrequenz unterscheidet. Auf der x-Achse ist die Dauer der Messung aufgetragen.

![Frequenzverlauf](image)

Abb. 3.14: Beschichtungsvergleich eines gereinigten und eines ungereinigten Quarzes; Beschichtungsreagens: α-Liponsäure

Die Immobilisierungen von α-Liponsäure auf einem gereinigten und einem unge reinigten Quarz zeigten einen deutlichen Unterschied in der Massenzunahme der beiden Quarze (Abb. 3.14). Der Frequenzverlust des gereinigten Quarzes fällt im Vergleich mit dem ungereinigten Quarz fast 3-mal höher aus. Beide Kurven beschrei-
Ergebnisse

ben eine Sättigungskinetik, wobei die Kurve, die bei Beschichtung des ungereinigten Quarzes aufgenommen wurde, früher in eine Sättigung übergeht.

3.2.2 Aufbringen der Einzelmolekülschichten

Einzelmolekülschichten bilden die Grundlage zur Modifikation des Quarzes mit den biologischen Komponenten, indem sie als Bindeglied zwischen der biologischen und der technischen Seite eines Biosensors fungieren. In Vorversuchen wurden die Bindungsgüten von verschiedenen Einzelmolekülschicht-bildenden Molekülen untersucht, um die generelle Ausprägung der Beschichtung und die unterschiedliche Funktionalität der eingesetzten Substanzen zu überprüfen. In Abb. 3.15 sind exemplarisch die voltammetrisch erhaltenen Kurven eines unmodifizierten Quarzes und drei modifizierter Quarze (α-Liponsäure (TA), 11-Mercaptoundekansäure (11-MUS) und 2-Mercaptoethylamin (2-MEA)) gegenübergestellt.

Abb. 3.15: Voltammogramm eines nicht modifizierten Quarzes (blank) und dreier modifizierter Quarze (TA = α-Liponsäure; 11-MUS = 11-Mercaptoundekansäure; 2-MEA = Mercaptoethylamin)

Die Kurve des ungereinigten Quarzes zeigt deutlich das Verhalten des eingesetzten Redoxpaares. Der Ausschlag bei 0,34 V deutet auf die Oxidation des Kaliumhexazyanoferrats (K₄[Fe(CN)₆]) zu dessen Redoxpartner K₃[Fe(CN)₆] hin, der Ausschlag

Der eingesetzte kurzketttige Einzelschichtbildner 2-MEA zeigt im Vergleich zu den langketttigen Chemikalien grundlegend verschiedene Charakteristika, wie in Abb. 3.16 zu sehen ist.

Die Kurve des mit 2-MEA beschichteten Quarzes zeigt erneut die schon in Abb. 3.15 erkannten Ausschläge aufgrund der Reduktion und der Oxidation des Redoxpaares. Eine weitere Behandlung des Quarzes mit Dodekanthiol (2-MEA geblockt) bewirkte einen Rückgang der Netto-Stromstärke um 24 %, die Elektrodenoberfläche wurde „abgeblockt“. Die Leitfähigkeiten der mit den anderen Schichtbildnern modifizierten
Elektroden wurden durch die zusätzliche Behandlung mit Dodekanthiol allerdings nicht beeinflusst (Daten nicht gezeigt).

Ein umfassenderes Bild bietet der Vergleich aller verwendeten Einzelschichtbildner in Abb. 3.17. Die durch die Messung eines nicht modifizierten Quarzes erreichte Maximalstromstärke wurde gleich 0 % gesetzt und die Bedeckungsgüte der modifizierenden Chemikalien anhand der korrelierenden Maximalspannungen errechnet. Während die langkettigen Beschichtungsmaterialien nahezu 100 % der Elektrode abdecken, sinkt die Fähigkeit zur Abschottung bei den kurzketigen Chemikalien um 5,3 % (α-Liponsäure) bzw. 32,6 % (2-MEA).

![Bar Chart](image)

Abb. 3.17: Vergleich der Bedeckungsgüten von Dodekanthiol (DT), 11-Mercaptoundekansäure (11-MUA), 11-Mercaptoundekanol (11-MUO), α-Liponsäure (TA) und 2-Mercaptoethylenamin (2-MEA)

3.2.3 Aktivierung der Einzelmolekülschichten

Um die biologischen Komponenten auf den Quarz aufbringen zu können, muss zunächst ein Anker geschaffen werden, an den die Proteine oder Peptide binden können. Mit Hilfe der EDC/NHS-Reaktion werden reaktive Endgruppen auf den Einzelmolekülschichten gebildet, die zur Anbindung der biologischen Komponenten dienen. Abb. 3.18 zeigt den Prozess der Aktivierung von Carboxylgruppen auf dem Quarz während der Frequenzmessung in der Modifikationszelle. Über einen Zeitraum
von 45 Minuten sinkt die Frequenz um 116 Hz ab. Die erste Hälfte der Messung ist von einem stetig linearen Abfall der Frequenz geprägt, während die zweite Hälfte einer Sättigungskinetik ähnelt.

Abb. 3.18: Messung des Frequenzrückganges während der EDC/NHS-Beschichtung

3.2.4 Aufbringen der Proteinschicht

3.2.5 Stabilitätsuntersuchungen

Temperatureinfluss

Die wichtigste Vorraussetzung zur Messung von geringen Frequenzunterschieden ist das Vorhandensein einer stabilen Basislinie. Tritt hier schon eine hohe Abweichung auf oder wird eine nicht zu kontrollierende Schwankung beobachtet, sind alle Folgemessungen nicht aussagekräftig. Den größten Effekt auf die Frequenzstabilität bei piezoelektrischen Messsystemen übt die Umgebungstemperatur aus, da sie einen direkten Einfluss auf die rheologischen Eigenschaften der fluiden Phase ausübt. Für die Quarze selber spielt die Umgebungstemperatur eine untergeordnete Rolle, da es sich um stabile AT-geschnittene Quarze handelt. Da aufgrund von Kostenfaktoren und zugunsten einer praktikablen und einfachen Konstruktion keine Temperiervorrichtung in die Flusszelle integriert wurde, wurden die Temperaturschwankungen mit Hilfe einer Referenzzelle ermittelt und mit den Originaldaten
verrechnet. Die Werte der Frequenzverschiebung und der Temperaturentwicklung wiesen eine Korrelation auf, die in Abb. 3.21 dargestellt ist.

![Graph showing correlation between temperature and frequency difference](image)

Abb. 3.21: Korrelation zwischen Temperatur der flüssigen Phase über dem Quarz und der resultierenden Frequenz

 Schwankung des Sensors

Die in Abb. 3.22 dargestellte Frequenzmessung wurde mit einem frisch modifizierten (11-MUS und Cd₂(GSH)₂), gereinigten Quarz aufgenommen und zeigt in den ersten zwei Stunden des Spülen im kontinuierlichen Pufferstrom (0,2 mL/min) eine Frequenzzunahme des Quarzes von durchschnittlich 2 Hz. Im späteren Verlauf allerdings pendelte sich die Frequenz auf einen Wert ein, der mit einer maximalen Schwankung von +/- 1 Hz über den Rest der Messung stabil blieb. Die Unterbrechung des Flüssigkeitsstromes hatte keinen Effekt auf das Rauschverhalten des Sensors.
Der für diese Messung benutzte Quarz zeigte über mehrere Stunden hinweg eine Frequenzstabilität von +/- 1 Hz, während ein Quarz, der mit 2-MEA und Cd\(_2\)(GSH)\(_2\) modifiziert wurde, einen Drift von 9 Hz über 35 Minuten hinweg aufwies (Abb. 3.23). Die Frequenzzunahme entwickelte sich fast linear über die Zeit.
Vorgreifend auf das Kapitel der Schwermetallmessung kann an dieser Stelle die erfolgreiche Durchführung von reproduzierbaren Schwermetalldetektionen durch die 2-MEA-Beschichtung erwähnt werden. Da aber die Stabilität der Quarzbeschichtung keine längeren und/oder mehrfache Untersuchungen zuließ, wurde im Weiteren auf diese Immobilisierungsmethode und die nähere Charakterisierung der Beschichtung verzichtet.

3.3 Schwermetallmessungen

Zuerst wurde eine einfache Methode der Schwermetallmessung angewandt, bei der keine Pumpe eingesetzt wurde. In diesem Fall wurden die zu analysierenden Proben mit einer Spritze in den Messraum injiziert, nach einer Inkubationszeit durch den ursprünglichen Puffer ersetzt und der Quarz wieder regeneriert. Für alle weiteren Messungen wurden nur Quarze verwendet, die durch 11-MUS und Cd₂(GSH)₂ modifiziert wurden, da diese Art der Immobilisierung der biologischen Komponente durch die Vorversuche am effektivsten erschien.

30 Sekunden konnte wieder eine Basislinie, jedoch mit einer geringeren Frequenz beobachtet werden. Die mit der Ziffer 2 markierten Schritte zeigen die Auswirkungen zweier Waschschrifte, die zur Entfernung der eingetragenen Schwermetalllösung eingesetzt wurden. Auch hier stellten sich jeweils wieder stabile Basislinien ein, jedoch unterschieden sie sich um 30 Hz von der Ausgangsfrequenz. Der nun folgende Regenerationsschritt (Ziffer 3) ist von einem relativ großen Frequenzabfall geprägt. Das Erreichen der erneuten Basislinie dauerte hier im Vergleich zu den vorher besprochenen Injektionsschritten fast dreimal so lange. Der Messzyklus wird durch die Injektion des Ausgangspuffers und dem damit einhergehenden Frequenzanstieg auf das Ausgangsniveau abgeschlossen (Ziffer 4).

3.3.1 Charakterisierung der statischen Messmethode

Einspritzverhalten

Ergebnisse

Abb. 3.25: Einfluss des Einspritzverhaltens auf die Frequenz bei statischer Schwermetallmessung

Wiederholbarkeit
Die in Abb. 3.25 gezeigten Graphen wurden simultan an zwei verschiedenen Steuerungsanschlüssen aufgenommen, was auch den Versatz der Kurven bei den Injektionszeitpunkten erklärt. Trotz des Einsatzes von zwei Quarzen werden nach dem Entfernen der Schwermetallösung aus der Messkammer sehr ähnliche Frequenzen erreicht. Die Wiederholbarkeit von aufeinanderfolgenden Schwermetallmessungen an einem Quarz zeigt die Abb. 3.26.
Abb. 3.26: Frequenzverlauf von aufeinanderfolgenden Messungen im statischen System

Wie schon in der Abb. 3.24 erläutert, folgt auch die in der Abb. 3.26 dargestellte Messung der generellen Verfahrensweise der statischen Schwermetallanalyse. Das erste Absinken der Frequenz markiert die Zugabe der Schwermetalllösung (Ziffer 1), Ziffer 2 zeigt das Auswaschen der Messkammer, gefolgt von der Injektion der Regenerationslösung (Ziffer 3) und deren Auswaschung (Ziffer 4). Diese Prozedur wurde im direkten Anschluss an die erste Messung wiederholt. Die Frequenzen nach dem jeweiligen Auswaschen der Schwermetalllösung betrugen 17 bzw. 16 Hz, so dass von einer Reproduktion der Messung gesprochen werden kann. Die am Ende der zweiten Messung erreichte Frequenz weicht im Schnitt um 1 Hz von der zu Beginn gemessenen Frequenz ab.

3.3.2 Regeneration der biologischen Komponenten

Der Einsatz von DTT ermöglichte eine 100%ige Regeneration des Quarzes, während der Einsatz des Acetat- und des Phosphat-Puffers sehr geringe bzw. keine Regeneration erwirkte. Die Injektion von EDTA allerdings erhöhte die Frequenz des regenerierten Quarzes noch über dessen Anfangsfrequenz hinaus.

3.3.3 Schwermetallmessungen im statischen System

Selektivität

Der Sensor wurde auf seine Selektivität geprüft, indem jeweils verschiedene Schwermetalle zu gleichen Molaritäten dem Standardpuffer zugesetzt und in die Zelle injiziert wurden. Abb. 3.28 zeigt den Vergleich der Frequenzrückgänge nach Injektion verschiedener Schwermetalllösungen. Um eine Vergleichbarkeit zu gewährleisten, wurden jeweils 6 µmolare Lösungen der Schwermetalle zur Messung eingesetzt.

Die verwendete Beschichtung ließ die Bindung aller eingesetzten Schwermetalle und des Metalloids Arsen zu. Allerdings wurden die äquivalent konzentrierten Analyten in unterschiedlichem Maße gebunden. Der größte Frequenzunterschied von 30 Hz war durch die Injektion einer Kadmiumlösung zu erkennen, gefolgt von den Analyten Blei und Kupfer, die einen Frequenzabfall von 24 bzw. 22 Hz beobachten ließen. Den geringsten Frequenzunterschied (13 Hz) zeigte die Injektion des Metalloids Arsen. Kalzium und Magnesium, die ebenfalls wie die untersuchten Schwermetalle als 2fach positive Ionen in Lösung vorlagen, verursachten keine Frequenzverluste.

Sensitivität

Um unbekannte Konzentrationen eines Schwermetalls in Lösung zu bestimmen, muss eine Kalibrationsgerade für den Sensor angefertigt werden. Exemplarisch zeigt Abb. 3.29 eine Kalibrationsgerade für Kadmium mit Trendlinie und Geradengleichung.
Deutlich ist der lineare Bereich der Kalibrationsgeraden von 1 bis 30 µM Kadmium zu erkennen. Darüber liegende Konzentrationen (50 µM) weichen von der Trendlinie ab und wurden deshalb nicht zur Berechnung der Geradengleichung mit einbezogen.

3.3.4 Schwermetallmessung im kontinuierlichen System

Anders als die im vorigen Kapitel beschriebene Methode, statisch die Schwermetallkonzentration einer Lösung zu bestimmen, wird in diesem Kapitel die Möglichkeit einer kontinuierlichen Schwermetallmessung beschrieben. Für den Aufbau wurde eine Pumpe benötigt, die einen möglichst konstanten und pulsationsarmen Flüssigkeitsstrom erzeugt, damit der empfindliche Quarz durch das Durchströmen der fluiden Phase geringstmöglich beeinflusst wird. Der Graph der kontinuierlichen Messung (Abb. 3.30) zeigt in wesentlichen Punkten – im Vergleich zur statischen Messung – starke Unterschiede, die durch das Wegfallen der Waschschritte bedingt sind. Zum besseren Verständnis des Messvorganges zeigt Abb. 3.30 den generellen Verlauf einer Schwermetallmessung mit anschließender Regeneration im kontinuierlichen System bei einer Flussrate von 0,2 mL/min.
Nach Erreichen eines konstanten Ausgangsniveaus wurde die metallsalzhaltige Lösung durch pulsationsfreies Umschalten eines 6-Wege-Ventils in den Pufferstrom geleitet. Dies führte zu einem Frequenzrückgang des Quarzes von 32 Hz. Im weiteren Verlauf der Messung stieg die Frequenz bis zu einem neuen Niveau von 22 Hz. Der Injektion der Regenerationslösung folgte eine weitere Frequenzerhöhung, die ihrerseits in ein neues Niveau überging, dessen Frequenz allerdings 3 bis 4 Hz über der Startfrequenz lag. Im Folgenden werden alle Ergebnisse zur Konzentrationsbestimmung ausschließlich mit der Frequenzabnahme und Einstellung der konstanten Basislinie dargestellt.

Wiederholbarkeit
Wie auch bei der Methode der statischen Schwermetallmessung spielt auch in der kontinuierlichen Nachweismethode die Reproduzierbarkeit eine wichtige Rolle. Abb. 3.31 zeigt die wiederholte Injektion einer 20 µM Kadmiumlösung und die anschließende Regeneration.
Durch die Injektion des schwermetallhaltigen Puffers wird die Frequenz des Quarzes bis zum Erreichen eines stabilen Wertes herabgesetzt, die Substitution der Regenerationslösung lässt die Frequenzwerte wieder zu ihrem ursprünglichen Wert zurückkehren. Dieses Erscheinungsbild wiederholt sich bei erneuter Durchführung der beschriebenen Prozedur. Es ist zu beobachten, dass sowohl die Frequenzen nach Schwermetalexposition als auch nach der Regeneration bei den wiederholten Messungen nahezu identisch sind.

Selektivität
Wie auch bei der statischen Messvariante, wurden die beschichteten Quarze auf ihre Selektivität gegenüber den verwendeten Schwermetallen untersucht. Abb. 3.32 zeigt die Abhängigkeit der Endfrequenz des Quarzes von den eingesetzten Schwermetallösungen. Um eine Vergleichbarkeit mit den Ergebnissen der statischen Messmethode zu ermöglichen, wurden – wie auch zur Messung des semikontinuierlichen Ansatzes – 6 µM eines jeden Schwermetalls eingesetzt.

Der direkte Selektivitätsvergleich der mit Cd\(_2\)(GSH)\(_2\) beschichteten Quarze zeigt eindeutig eine generell höhere Frequenzabnahme bei Schwermetallexposition im kontinuierlichen Messverfahren im Vergleich zu der statischen Messmethode. Die zusätzlich auftretenden Frequenzunterschiede der kontinuierlichen Verfahrensweise belaufen sich bei allen untersuchten Schwermetallen (außer Kadmium) auf 30 bis 45 %. Der im Fluss verzeichnete Frequenzabfall bei Kadmiumexposition zeigt die höchste Reaktion und übersteigt die im statischen Verfahren erreichten Frequenzen um 87 %. Der Vergleich in Abb. 3.33 zeigt nochmals anschaulich, dass im Mittel keine „Nicht-Schwermetalle“ wie Kalzium und Magnesium gebunden werden.

Abb. 3.33: Vergleich der Selektivitäten eines PC-2-modifizierten Quarzes (PC-2-mod.) im kontinuierlichen (kont.) System und zweier GSH-modifizierten Quarze im kontinuierlichen sowie statischen (stat.) System
3.3.5 Geprägte Matrix

Ergebnisse

Abb. 3.35: Spezifische Kadmium-Detektion (20 µM) durch eine geprägte Matrix im kontinuierlichen System (Kontrolle: 20 µM Kupfer)

Auch bei relativ geringen Konzentrationen (2 µM) kann oben beschriebenes Verhalten beobachtet werden. Um die Allgemeingültigkeit dieser Bindungsunterschiede zu bestätigen, wurden weiterhin Versuche mit Schwermetallkonzentrationen von 2 µM durchgeführt. Hierzu wurde dieselbe Immobilisierungstechnik, wie sie auch zur Produktion der letztgenannten Ergebnisse herangezogen wurde, verwendet. Die erhaltenen Ergebnisse der selektiven Schwermetallbestimmung bei niedriger Schwermetallexposition sind in Abb. 3.36 dargestellt.
Abbildungen: Spezifische Kadmium-Detektion (2 µM) durch eine geprägte Matrix im kontinuierlichen System (Kontrolle: 2 µM Kupfer, 2 µM Blei)

Auch in dieser Abbildung ist das typische Verhalten der Frequenzverläufe bei kontinuierlichem Betrieb zu erkennen. Nach Reduktion der Frequenz, bei Schwermetallkontakt, stellte sich – bei Bindung der Schwermetalle – eine neue konstante Frequenz unterhalb der Anfangsfrequenz ein, während bei nicht erfolgter Bindung die Frequenz wieder nahezu den Ausgangswert erreichte. Im Vergleich zur Exposition mit hohen Schwermetallkonzentrationen konnten allerdings keine „Buckel“ entdeckt werden, die normalerweise kurz nach der Schwermetallexposition zu erkennen waren (Abb. 3.30). Da nur die Frequenz des mit Kadmium in Kontakt gekommenen Quarzes auch nach dem Auswaschen der Zelle erniedrigt bleibt, kann auf die Spezifität der aufgetragenen Beschichtung geschlossen werden.
4. Diskussion

4.1 Phytochelatin-Produktion und Immobilisierung

4.1.1 In-vivo-Induktion

4.1.2 In-vitro-Induktion

Die in dieser Arbeit vorgestellte innovative Methode der In-vitro-Phytochelatin-Produktion verlangt als Ausgangspunkt die Produktion des Enzyms, das die Synthese ermöglichen soll – der Phytochelatin-Synthase. Die grundlegenden Reaktionsoperationen der In-vitro-Synthese von Phytochelatin lehnen sich an die Versuchsdurchführungen von Hayashi et al. 1991, Al-Laham et al. 1999 und Vata-
maniuk et al. 2000 an. Das Institut für Mikrobiologie der RWTH-Aachen forscht seit langem auf dem Gebiet der Schwermetallresistenz, unter anderem auch mit der Hefe *Schizosaccharomyces pombe*. Dieser Organismus wurde als Enzymlieferant gewählt, da die Reinigung von Phytochelatinen aus der Hefe und der Produktionsmechanismus der Phytochelatine hinreichend bekannt waren. Die Vorteile dieser Hefe liegen in ihrer schnellen Wachstumsrate, der guten Aufschlussmöglichkeit der Zellen und einer relativ hohen Schwermetall-Toleranz, was für eine ausreichende Phytochelatin-Bildung spricht (Hayashi et al. 1991; Al-Lahham et al. 1999). Durch die Fermentation in einem 15-L-Fermenter konnte eine volumetrische Produktivität von 0,7 gTS/Lh erreicht werden, was im Bereich einer normalen Hefe-Fermentation liegt.

Die Fermentationsdaten aus Abb. 3.2 lassen eine typische Wachstumskurve erkennen, die von einer Anwachs-, einer exponentiellen und einer stationären Phase geprägt ist. Das Ansteigen der Rührerdrehzahl in der Mitte der exponentiellen Phase lässt sich dadurch erklären, dass der eingestellte Schwellenwert der Sauerstoffkonzentration unterschritten wurde. Die Anhebung der Rührerdrehzahl kompensierte den Effekt durch die gesteigerte Zerschlagung der Luftblasen im Medium. Nach Erreichen der stationären Phase fiel die Rührerdrehzahl etwas ab, da durch das fehlende Wachstum und den Rückgang der Lebendzellzahl der Sauerstoffbedarf der Zellen stetig sank.

4.1.3 Zellaufschluss

erhöhter Temperatur vermieden. Dies sollte einem Aktivitätsverlust des Enzyms vorbeugen.

4.1.4 Proteinfällung

durch die Salzfällung realisierbare Reinigung des Enyzms konnte durch eine fraktionierte Fällung erreicht werden. Die Proteine, die durch die 50%ige Sättigung des Rohextraktes ausfielen, wurden durch Zentrifugation entfernt, der Überstand zu 75% mit Ammoniumsulfat gesättigt und wieder zentrifugiert. Das nun erhaltene Präzipitat enthielt nur Proteine, die in den Sättigungsschritten von 50 bis 75% ausfallen. Die in Abb. 3.4 dargestellten spezifischen Aktivitäten verifizieren deutlich das Konzept der Steigerung der spezifischen Aktivität durch die Ammoniumsulfat-Fällung. Durch die fraktionierte Fällung wurde eine Steigerung der spezifischen Aktivität um das 18fache erzielt. Friederich et al. 1998 dagegen fällten den Rohextrakt von Silene vulgaris durch das Einstellen einer 15%igen Ammoniumsulfat-Sättigung. Diese Fällung erbrachte aber nur eine Steigerung der spezifischen Aktivität um das 1,75fache.

4.1.5 Synthesetemperatur

4.1.6 Immobilisierung

Sol-Gel-Immobilisierung

Diskussion

Alginateinhüllung

PVA-Einhüllung
Auch die Einhüllung von Enzymen in eine PVA-Matrix ist in der Literatur wohl bekannt (Lozinsky und Plieva 1998; Doria-Serrano et al. 2001). Die Einhüllung des Enzympräparates lässt im Gegensatz zu der Einhüllung in Alginat keinen Aktivitätsverlust erkennen (Abb. 3.10), was durch die größere Maschenweite der Matrix begründet werden kann (Khoo und Ting 2001). Durch die größere Maschenweite ist ein höherer Massentransfer möglich, was eine erhöhte Aktivität mit sich bringt. Die Aktivität des nicht vernetzen Präzipitates nach einem Tag der Inkubation weist nur noch 40 % der Ausgangsaktivität auf, bleibt aber für die restliche Dauer der Untersuchung konstant. Die Quervernetzung des Präzipitates lässt auch hier die Aktivität der Phytochelatin-Synthase um mehr als 90 % abfallen, die Aktivitäten bleiben aber über den gesamten Versuchszeitraum konstant. Generell lassen sich bei der PVA-Einhüllung aber größere Aktivitäten erzielen, was wieder auf die größere
Diskussion

Die Kadmiumaufnahme der PVA-Immobilisate ist im gleichen Bereich, wie die der Alginat-Immobilisate anzusiedeln, wie aus Abb. 3.12 zu erkennen ist. Auch PVA, das viele Hydroxylgruppen präsentiert, kann durch die Hydroxylgruppen das Kadmium adsorbieren und so der Lösung entziehen (Takeda et al. 1999, Buyuktuncel et al. 2001). Da die Charakterisierung der PVA-Immobilisate, die der Alginatmatrix sehr ähnelt, wurde auch hier eine Temperatur von 8 °C und der Einsatz des vernetzten Präzipitats für die Phytochelatin-Synthese vorgesehen. So wurde eine geringe Ausblutung der Proteine und nur eine minimale Adsorption des Kadmiums erreicht.

Stagnation des Flusses das Volumen in der Säule eine höhere Konzentration an Phytochelatin aufwies und so die Berechnung der Gesamtkonzentration an Phytochelatin verfälschte. In den folgenden Wochen homogenisierte sich die fluide Phase, so dass ein scheinbarer Konzentrationsabfall zu beobachten war. Friederich et al. (1998) fügten jeden Tag neues Substrat für die Synthese von Phytochelatin hinzu. Durch die Verwendung von nur sehr grob gereinigtem Rohextrakt aus *Silene vulgaris* und der täglichen Zugabe von Substrat, konnten Produktivitäten von 633 mg/L pro Tag erzielt werden. Allerdings wurden zu diesen Synthesen Enzymaktivitäten von 9 Units eingesetzt, während die in dieser Arbeit eingesetzte Aktivität bei 0,0025 bis 0,03 Units lag und Produktivitäten von bis zu 4,5 mg/L pro Tag erlaubte. Das unterschiedliche Produktionskonzept ist jedoch nicht vergleichbar.

4.2 Schwingquarze

Die grundlegende Charakteristik eines Schwingquarzes, die auf ihm abgelagerte Masse durch einen Frequenzrückgang detektieren zu können, kann zur Berechnung dieser Masse dienen. Hierbei kann allerdings nur mit Näherungen gearbeitet werden, weil sich die von Sauerbrey entwickelte Formel nur auf die Abscheidung dünner, starrer Schichten im Vakuum bezieht (Sauerbrey 1959). Da die vorgenommenen Messungen allesamt in Flüssigkeit durchgeführt wurden, spielen Einflüsse der Viskosität, Temperatur und Ionenstärke der fluiden Phase eine große Rolle im Frequenzverhalten des Quarzes (Janshoff et al. 2000). Für die Erklärung mancher Ergebnisse wird es hilfreich sein, die „gewogenen“ Massen zu bestimmen, obwohl diese Zahlen nur einen Anhaltspunkt geben können. Nach dem Einsetzen der spezifischen Daten des für die Messungen verwendeten Quarzes konnte die maximale Auflösung des Kristalls mit 0,55 ng errechnet werden. Dieser Wert bezieht sich auf die Frequenzabnahme von einem Hz. Umgerechnet ergibt sich für die Frequenzerniedrigung von 1,8 Hz ein Massenzuwachs von einem Nanogramm.

4.2.1 Aufbringen der Einzelmolekülschichten

Die Einzelmolekülschichten bilden die Basis zum Aufbau eines piezoelektrischen Biosensors, da sie als Verbindungsglied der biologischen und technischen Kompo-
Diskussion

nente fungieren. Die in dieser Arbeit eingesetzten Verbindungsglieder gehören alle zu den sich selbst organisierenden Einzelmolekülenschicht-Bildnern, was bedeutet, dass diese Moleküle sich von selbst auf einer Goldoberfläche in hoch geordneten Strukturen organisieren (Kawaguchi et al. 2000, Tang et al. 2000). Diese ausgerichteten Gefüge besitzen den Vorteil, dass sie eine uniforme Oberfläche bilden, die die Elektrode zudem vor unerwünschten Einflüssen schützt. Abb. 4.1 verdeutlicht die dichte und uniforme Schichtbildung anhand des Beispiels einer 11-MUS.

Abb. 4.1: Bildung und Gestalt einer Einzelmolekülenschicht von 11-MUS

Diskussion

4.2.2 Aktivierung der Einzelmolekülülschichten

Abb. 4.2: Reaktionsschema der EDC/NHS-Kopplung

erhöhte Frequenzabfall der GDA-Aktivierung kann durch die dichtere Packung der Einzelmolekülschicht erklärt werden.

\[
\text{CH}_3\text{CH}_2\text{N}(-\text{CH}_2\text{N}(-\text{CH}_3))
\]

Abb. 4.3: Aktivierte Einzelmolekülschichten mit EDC (links), EDC/NHS (Mitte) und GDA (rechts)

Da zudem die EDC-katalysierten Intermediate in wässrigen Lösungen instabiler als GDA-aktivierte Schichten sind (Hermanson 1996), kann zusätzlich davon ausgegangen werden, dass die Aktivierung mit GDA die höchste Massenanlagerung und damit den höchsten Frequenzverlust herbeiführt, was die Ergebnisse auch belegen (Abb. 3.20).

4.2.3 Aufbringen der Proteinschicht

Diskussion

zugrunde. Würde an jedes Molekül der Einzelschicht ein Glutathion binden, müsste eine Frequenzniedrigung von ca. 1800 Hz zu Stande kommen. Die tatsächlich erreichte Frequenzniedrigung beträgt nur die Hälfte, was zu dem Schluss führt, dass die Glutathion-Moleküle durchschnittlich nur alle 2,5 Bindungsstellen der Einzelmolekülschicht besetzen. Dies könnte durch die Reaktion der Thiol-Gruppe des GSH mit der aktivierten Einzelschicht zu erklären sein. Das Glutathion wird nicht in der vertikalen Position, sondern horizontal gebunden und blockiert somit die benachbarten Bindungsstellen (Hepel und Tewksbury 2004). Eine schematisierte Erläuterung der vermuteten Proteinfalten gibt Abb. 4.4 wieder. Die stark erhöhte Frequenzabnahme der (GSH)$_2$Cd$_2$-Komplex-Beschichtung (Abb. 3.20) kann nicht alleine auf das zusätzliche Schwermetall im Komplex zurückzuführen sein, dieser Frequenzverlust wäre geringer. Vielmehr muss der Komplex eine höhere Ordnung aufweisen, die vor allem durch die Blockierung der Thiol-Gruppe zustande kommen könnte. Die eingesetzten Glutathion-Moleküle können nicht mehr horizontal gebunden werden und so potenzielle Bindungsgruppen der Einzelschicht blockieren. Die PC/Cd-Komplexe weisen das gleiche Bindungsmuster wie die GSH/Cd-Komplexe auf und verursachen durch die höhere molare Masse des Phytochelatins einen größeren Frequenzverlust. Auch auf die molekulare Masse bezogen, stimmt der Zuwachs bezogen auf die Bindungsstellen, überein. Der größte Frequenzrückgang wird durch die Beschichtung der (GSH)$_2$Cd$_2$-Ethylendiamin-Beschichtung (nähere Erläuterung: Kap. 4.2.8) hervorgerufen. Theoretische Aussagen lassen sich hier nur schwer treffen, aber durch die Diamin-Verkettung scheinen sich mehrere Schichten auf dem Quarz zu bilden. Der Frequenzrückgang erhöht sich um das 1,7fache der nicht verketteten Komplexe, was nicht auf das zusätzlich gebundene Di-Amin zurückzuführen ist.
4.2.4 Stabilitätsuntersuchungen

Änderung der Viskosität durch die injizierte Schwermetallösung zurückzuführen. Dieser Effekt ist aber weitgehend bekannt und wird für die Viskositätsmessung von Ölen verwendet (Ash et al. 2003). Weiterhin ist aber auch der mit der Beschichtung oder Messung einhergehende Effekt der Viskositätsänderung in der Literatur bekannt (Galli et al. 2003). Da die Schwermetalllösung auf demselben Puffer wie die Waschlösung basiert, kann der Frequenzabfall alleine auf die Anwesenheit des Schwermetalls zurückgeführt werden. Die anschließenden Waschschritte sollen die injizierte Schwermetalllösung aus der Messkammer hinaustreiben und würden – ohne Interaktion mit dem Quarz – das Erreichen der ursprünglichen Frequenz hervorrufen. Dadurch, dass die Frequenz sich erniedrigt, muss es eine Massen-erhöhung auf dem Quarz gegeben haben, der Quarz ist schwerer geworden. Eine erhöhte Viskosität kann nicht als Ursache der erniedrigten Frequenz ins Feld geführt werden, da durch die zwei Waschschritte eine vollständige Entfernung der schwermetallhaltigen Lösung erreicht wurde. Das Injizieren der Regenerationslösung bringt eine weitere Frequenzabnahme mit sich, was wieder auf eine hohe Viskosität der hochkonzentrierten Regenerationslösung zurückzuführen ist. Der abschließende Waschschritt zur Entfernung der Regenerationslösung und des gelösten Schwermetalls führt wieder zum Erreichen der Ausgangsfrequenz. Im Weiteren werden die einzelnen Schritte genauer und ausführlicher erklärt.

Die Untersuchung des Einspritzverhaltens sollte Aufschluss über das Bindungsverhalten der Beschichtung auf dem Quarz geben. Aus Abb. 3.25 ist zu ersehen, dass die Art und Weise der Injektion im Endeffekt keinen Einfluss auf die Bindung der Schwermetalle hat. Nach der langsamen Injektion zeigt sich eine Art von Sättigung, die wahrscheinlich auf die langsamere Bindung der Ionen aus der dem Quarz angrenzenden Flüssigkeitsschicht zurückgeführt ist (Deakin und Byrd 1989). Schnelles Injizieren lässt keine Verzögerung in der Schwermetallbindung erkennen, weshalb für alle weiteren Messungen im statischen System diese Einspritzart gewählt wurde. Durch Abb. 4.5 soll erläutert werden, was den Unterschied der beiden Injektionsarten ausmacht.
Diskussion

Abb. 4.5: Einfluss der Injektionsmodi auf das Bindungsverhalten von Schwermetallen; langsame Injektion (rechts oben); schnelle Injektion (rechts unten)

Im Fall der langsamen Injektion ist es denkbar, dass die eingespritzte Lösung sich nur schleppend mit der vorliegenden Pufferlösung vermischt und diese schließlich aus dem Reaktionsraum verdrängt. Dies würde den sättigungsähnlichen Abfall der Frequenz erklären, der sich im Zuge der langsamen Injektion ausprägte. Wird dahingegen schnell injiziert, bilden sich viele turbulente Wirbel aus, die eine schnelle Bindung der Schwermetalle an die Matrix gewährleisten. Durch diese Ergebnisse begründet wurden die Schwermetall-, Wasch- und Regenerationslösungen „schnell“ in die Messkammer injiziert, um eine schnelle Bindung, eine ausreichende Entfernung der Schwermetalllösung und eine hinreichende Reinigung der Matrix zu erreichen. Diese Punkte ermöglichen eine schnelle Durchführung der Messung und die akkurate Wiederverwendbarkeit des Biosensors.

4.2.6 Schwermetallmessung im statischen System

Mit dieser „Spezialisierung“ deckt sich die Beobachtung, dass Kadmium von der Metall-Ionen-bindenden Schicht auf dem Quarz am besten gebunden wird und somit den größten Frequenzabfall auslöst. Die Art der Chelatisierung des Kadmiums durch das Glutathion wurde von Diaz-Cruz et al. 1999 durch voltammetrische Analysen genauer analysiert. Zum besseren Verständnis ist in Abb. 4.6 die Formation eines \((\text{GSH})_2\text{Cd}_2\)-Komplexes dargestellt.

\[
\begin{align*}
\text{SAM} & \quad \text{Goldschicht} \\
\text{Cd}^{2+} & \quad \text{Cd}^{2+} \\
\text{S} & \quad \text{S} \quad \text{S} \quad \text{S}
\end{align*}
\]

Abb. 4.6: Glutathion/Kadmium-Komplex \((\text{GSH})_2\text{Cd}_2\) nach Diaz-Cruz et al. 1999

Um die Bindungsverhältnisse der Matrices genauer zu bestimmen, kann auf die Bestimmung der gebundenen Molmenge der verschiedenen Schwermetalle zurückgegriffen werden. Voraussetzung ist hier ebenfalls, dass die Formel für die Bestimmung der Masse – die Sauerbrey-Formel – in diesem untersuchten System der Detektion gültig ist. Tab. 4.1 gibt die errechneten Molmengen, die auf dem Quarz gebunden haben, an.

Tab. 4.1: Berechnung der gebundenen Schwermetallmassen und -molaritäten

<table>
<thead>
<tr>
<th>Schwermetall</th>
<th>Frequenzabfall [Hz]</th>
<th>Masse [ng]</th>
<th>Molgewicht [g/Mol]</th>
<th>gebundene nMol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd</td>
<td>31</td>
<td>17,05</td>
<td>112,41</td>
<td>0,15</td>
</tr>
<tr>
<td>Pb</td>
<td>24</td>
<td>13,20</td>
<td>207,20</td>
<td>0,06</td>
</tr>
<tr>
<td>Cu</td>
<td>22</td>
<td>12,10</td>
<td>63,50</td>
<td>0,19</td>
</tr>
<tr>
<td>As</td>
<td>13</td>
<td>7,15</td>
<td>75,00</td>
<td>0,10</td>
</tr>
</tbody>
</table>

Kalzium und Magnesium, die ebenfalls als zweiwertige Ionen in wässrigen Lösungen vorliegen, werden nicht detektiert, was mit den Ergebnissen von Satofuka et al. 2001 übereinstimmt. Auch hier konnten keine Glutathion-Komplexe mit „Nicht-Schwermetall-Ionen“ nachgewiesen werden. Die hohen Standardabweichungen der Schwermetallmessungen trüben das Bild einer reproduzierbaren Messung ein wenig. Da als Grundlage für den Vergleich der Schwermetallaffinität des Biosensors verschiedene Sensoren hergestellt wurden, schwanken die erzielten Werte um bis zu 30%.

Diskussion

4.2.7 Schwermetallmessung im kontinuierlichen System

Einfluss der Flussrate

Anders als im vorherigen Kapitel beschrieben, sollte versucht werden, schwermetallhaltige Lösungen kontinuierlich durch die Messkammer zu leiten und so die Schwermetallkonzentration zu bestimmen. Die kontinuierliche Methode ist nicht nur auf die Schwermetallanalytik beschränkt (Bontidean et al. 2003; Makower et al. 2003), sondern findet in allen Bereichen der Biosensorik Verwendung (Ward und Winzor 2000; Halamek et al. 2002; Länge et al. 2003).

Ein nicht zu vernachlässigender Punkt einer kontinuierlichen Messung stellt die Flussrate dar, mit der die Analytlösung in die Messkammer und auch wieder hinaus geleitet wird. Im Zuge von Vorversuchen stellte sich eine Flussrate von 0,2 mL/min als optimal heraus. Langsamere Flussraten führten zu niedriger ausgeprägten Frequenzverlusten, da wahrscheinlich keine komplette Vermischung der Analytlösung mit dem bereits in der Messkammer vorhandenen Puffer gewährleistet werden konnte. In diesem Zusammenhang kann Abb. 3.25 zur Erklärung herangezogen werden. Da durch die erhaltenen Ergebnisse aus Kapitel 3.3.1 geschlossen werden konnte, dass sich die Analytlösung bei „langsamen“ Einspritzen nur allmählich in der Messkammer ausbreitet, kann angenommen werden, dass sich bei einer noch geringeren Flussrate die Analytlösung noch schlechter verteilt. Die Injektionsgeschwindigkeit der statischen Messmethode konnte aufgrund der manuellen Betätigung der Spritze nicht quantifiziert werden, doch einzelne Untersuchungen erbrachten eine Flussrate des „langsamen“ Einspritzens von ungefähr 1 mL/min. Eindrucksvoll kann die These durch den Vergleich der statischen und der konti-
Diskussion
numerischen Messung gestützt werden. Durch das „langsames“ Einspritzen sank die Frequenz direkt nach Zugabe der Schwermetalllösung ab (Abb. 3.25), der Frequenzabfall der kontinuierlichen Messung änderte sich allerdings über einen Zeitraum von fast zwei Minuten (Abb. 3.30). Das schrittweise Einstellen einer neuen Grundlinie in der kontinuierlichen Messung ist somit durch die langsame Viskositätssteigerung in der Messkammer durch die geringe aber kontinuierliche Zufuhr der Analytlösung zu erklären. Noch geringere Flussraten könnten die Verteilung der Schwermetalllösung in der Messkammer negativ beeinflussen und so zu keiner vollständigen Bindung der Schwermetalle an die modifizierte Quarzoberfläche führen. Zudem konnten auch bei wiederholtem Einsatz desselben Quarzes keine reproduzierbaren Messungen bei Flussraten niedriger als 0,2 mL/min beobachtet werden. Höhere Flussraten führten zwar zu einer guten Durchmischung der Schwermetalllösung in der Messkammer, doch zeigte sich – bedingt durch die hohe Flussrate – ein kontinuierlicher Frequenzanstieg des beschichteten Quarzes. Durch die hohen Fließgeschwindigkeiten kam ein „Abrieb“ der Quarzbeschichtung zum Tragen, der reproduzierbare Messungen infolge der veränderten Bindungskapazität der Beschichtung unmöglich machte. Der Kompromiss aus ausreichender Durchmischung und geringem Abrieb ergab eine Flussrate von 0,2 mL/min.

Zur weiteren Erklärung der Fließdynamik werden im Folgenden die Messkammer und deren Design näher betrachtet. Die in Zusammenarbeit mit den technischen Werkstätten der RWTH entwickelte Flusszelle weist nach dem Einlassstutzen eine konische Bohrung auf, um eventuell vorhandene Luftblasen leichter aus dem System entfernen zu können (Abb. 4.7).

Abb. 4.7: Aufbau der verwendeten Flusszelle
Eine frühere Entwicklung, die diesen Konus nicht aufwies, konnte nicht zuverlässig verwendet werden, da sich Luftblasen aus der Messkammer nicht entfernen ließen. Die konische Bohrung führt den Flüssigkeitsstrom – anders als bei in der Literatur beschriebenen Flusszellen – nicht direkt an der Quarzoberfläche vorbei. Die Gefahr eines solchen Messkammerdesigns besteht in der Möglichkeit, dass die Analytmenge nicht vollständig auf dem Quarz zur Bindung kommt und so die exakte Analytkonzentration nicht festgestellt werden kann. Um diesen Sachverhalt für die hier verwendete Messzelle zu relativieren, wurden Färbeversuche mit Bromthymolblau durchgeführt und die Durchmischung als ausreichend befunden. Durch die konische Form kommt es zu Verwirbelung der injizierten Schwermetalllösung, wodurch ein intensiver Kontakt zur Quarzbeschichtung gewährleistet wird.

Eine Erklärung der, durch die Verwendung des hier vorgestellten Messverfahrens erhaltenen Werte, kann in den – im Vergleich zu anderen piezoelektrischen
Diskussion

Schwermetallmessung

Frequenzabfall in der kontinuierlichen Messung verantwortlich. Die Methodik der statischen Schwermetallmessung kann wahrscheinlich die vollständige Sättigung der Metall-bindenden Schicht mit Kadmium nicht erreichen, da nur die Schwermetall-Ionen einer dünnen Schicht der fluiden Phase über dem Quarz eine Bindung mit der Quarzbeschichtung eingehen können, und so die Schwermetallbindung nach einer gewissen Zeit durch Diffusionslimitationen zum Erliegen kommt. Die kontinuierliche Methode führt zu einer Verwirbelung der zu analysierenden Flüssigkeit, so dass hier keine Diffusionslimitationen auftreten können.

4.2.8 Geprägte Matrix

Abb. 4.8: Funktionsprinzip des „molecular imprinting“
5. Zusammenfassung

Zur Gewinnung von Phytochelatin in einem kontinuierlich betriebenen Säulenreaktor wurde quer- und co-quervernetzte Phytochelatin-Synthase (E.C. 2.3.2.15) aus *Schizosaccharomyces pombe* eingehüllt in Alginat, PVA und Sol-Gel eingesetzt. Durch die Teilreinigung des Enyzms konnte eine 18fache Erhöhung der spezifischen Aktivität erreicht werden. Die Immobilisierung des teilgereinigten Enzymes ermöglichte durch die geringe Ausblutung eine sehr geringe Proteinverunreinigung der fluiden Phase, ersparte so eine spätere Extraktion des Phytochelatins und ermöglichte eine Aufrechterhaltung der Produktivität über vier Wochen. Das beste Ergebnis lieferte die Einhüllung der co-quervernetzten, teilgereinigten Phytochelatin-Synthase in PVA mit einer volumetrischen Produktivität von 4,5 mg Phytochelatin-2 pro Liter und Tag.

Die Selektivität einer Kadmium-geprägten Matrix wurde bei Schwermetallkonzentrationen von 2 bzw. 20 µM gezeigt.

6. Literatur

Nieboer, E.; Richardson, D.H.S. (1980) The replacement of the nondescriptive term 'heavy metals' by a biologically and chemically significant classification of metal ions. Environmental Pollution (Series B) 1, 3-26.

Wong, Y. Y.; Ng, S. P.; Ng, M. H.; Si, S. H.; Yao, S. Z.; Fung, Y. S. (2002) Immunosensor for the differentiation and detection of Salmonella species based on a quartz crystal microbalance. Biosensors and Bioelectronics 17, 676-684.

LEBENSLAUF

Persönliche Daten:
Name, Vorname: Ebel, Marc Christofer Josef
Geburtsort, -datum: Aachen, 25.10.1975
Familienstand: ledig

Schulbildung:
1985 - 1993 Max-Plank Gymnasium, 77933 Lahr
1993 - 1995 Antoniuskolleg - Gymnasium, 53819 Neunkirchen
ab WS 1996/97 Studium der Biologie an der RWTH - Aachen
11/1998 Vordiplom Biologie an der RWTH - Aachen
24.09.2001 Abschluss als Diplom-Biologe an der RWTH - Aachen
11/2001 - 12/2004 Tätigkeit als wissenschaftlicher Mitarbeiter am Lehrstuhl für Biotechnologie der RWTH - Aachen